

A few hundred to now thousands Endangered

From 15 cranes last century to 831 today Endangered

Newly listed as endangered

Interconversion of Carboxylic Acid Derivatives

Gleevec – Novartis (\$4.65 Billion in sales in 2015). A kinase inhibitor, that is a first of its kind pill capable of treating certain blood cancers with only limited side effects. It was designed to combat leukemias with the relatively common "Philadelphia chromosome" (BCR-ABL kinase gene fusion)

How Kinases Work:

Carbonyl Death Star

$$H-A + :B \implies :A + H-B$$

Bottom line -> position of equilibrium Amounts to a (favors the side with thermodynamic & the more stable anion driving force (motive) for a (motive) for a

Weaker bases are favored at equilibrium

Compare: H H H-C-C-H H H PKq=51

Enolates as nucleophiles

A) Enolates are resonance stabilized, with a partial negative charge on carbon and oxygen.

B) Enolates are nucleophiles, so they could react at either the carbon atom or oxygen atom. The partial negative charges give them the **opportunity** to react at either the carbon or oxygen.

C) Reaction at the carbon atom gives the final product a C=O bond, while reaction at the oxygen atom gives the final product a C=C bond. However, C=O bonds are stronger than C=C bonds, so the **motive** is to react at the carbon atom with most electrophiles.

Draw both enantiomers

KRE -> B-hydroxy aldehyde with a new C-C bond between the aldehyde & and B carbons

Mechanism A

Aldehyde

Is Attacked By Enclate

Enclate

Attacks Aldehyde

Austin Powers

Aldol Reaction Considerations

1) When HOE is used as the base, equilibrium of the first step favors the aldebyde

2) Because there is HO present at the beginning <u>and</u> end of the reaction there is little driving force (motive) for the aldol reaction -> the aldol reaction is reversible

4) The reaction can make two new chiral centers